Latest Buzz...
                  

Translate

Saturday, March 16, 2019

Clean nuclear energy with a simple electricity output stage

University of New South Wales researchers led by Emeritus Professor Heinrich Hora have made important breakthroughs recently in developing clean nuclear energy technology.
When a proton (a Hydrogen nucleus) fuses with a Boron-11 nucleus it produces 3 alpha particles (Helium nuclei).
That's it. No radioactive fuels. No radioactive waste.
Hydrogen Boron-11 fusion
Hydrogen Boron-11 fusion

And another result: For each 11 grams of Boron-11 (one mole) converted to Helium, the energy produced is around 230 megawatt-hours.

At the level of individual nuclei, the mass of the three Helium nuclei produced is about 17 electron masses less than the mass of the Hydrogen nuclei (a proton) and the Boron-11 nuclei that undergo fusion to create them. It is this "missing" mass that appears as energy. Specifically this energy is kinetic energy imparted to the Helium nuclei.

Laser-boron fusion now ‘leading contender’ for energy
"The fuels and waste are safe, the reactor won't need a heat exchanger and steam turbine generator, and the lasers we need can be bought off the shelf," says Warren McKenzie, managing director of HB11, which owns the patents to the new technology.

When coal is used to fuel a high-efficiency low-emission "HELE" ultra-supercritical coal-fired power station, carbon dioxide emissions are 900 kilograms per megawatt-hour. The amount of carbon in the coal needed for each megawatt-hour of electricity generated is 900 x (12 / 44) kilograms. That is coal containing 245 kilograms of carbon is burned for each megawatt-hour.

To generate 230 megawatt-hours of electricity in a "HELE" coal-fired power plant coal containing over 56 tonnes of carbon would need to be burned. It would be converted into almost 21 tonnes of carbon dioxide.

Coal power plants have another serious handicap. The energy produced when coal is burned is heat energy. Extremely high pressure boilers and turbines are required to spin large generators to convert the heat energy into electricity.

With proton-Boron-11 fusion, the energy produced is in the form of fast-moving positively charged Helium nuclei. This kinetic energy of charged particles can be converted directly into electricity. There is no need for steam boilers, turbines and generators.
While the nuclear reactor is being developed, the technology to create electricity from fast-moving charged particles can be done in parallel. For instance, the ion propulsion test facility at the Australian National University could produce streams of ionised gases to use in developing the electricity production technology.
Professor Christine Charles is Head of the Space Plasma, Power and Propulsion laboratory at the Australian National University.
Professor Christine Charles is internationally recognised for her research on ion acceleration in expanding magnetised plasmas and its applications to a new generation of space engines and advanced material processing.

Friday, March 15, 2019

Coal lobbyists paid as adviser to Coalition Govt

Brendan Pearson - coal lobbyist and paid Coalition Government senior advisor
Brendan Pearson - coal lobbyist and paid Coalition Government senior advisor
Exclusive

Minerals Council eyes Tania Constable as CEO




The Minerals Council of Australia may hire the head of a carbon capture and storage group as its next chief executive after major member BHP forced out the previous chief for being too coal friendly.

It is understood that Tania Constable, a former treasury official with more than 20 years experience in government industry and resources jobs, is a leading candidate for the job. An announcement is due within two weeks.

The appointment has been more than six months in the making after the nation's top resources lobby group unexpectedly parted ways with former CEO Brendan Pearson after BHP threatened to review its membership.

Tania Constable, CEO Co-operative Research Centre for Greenhouse Gas Technologies, is understood to be a favourite to take charge at the Minerals Council of Australia. Sean Davey
A spokesman for the MCA said the recruitment process is at "an advanced stage of completion" and that an announcement would be made once the process is finalised. "The MCA will not comment on rumour or speculation regarding candidates for the role."

Mr Pearson, who last week joined the office of Trade Minister Steven Ciobo as a senior trade advisor after helping Finance Minister Mathias Cormann negotiate with Senate crossbenchers on company tax cuts, was seen as being too supportive of coal interests.


The rumoured shift to Ms Constable, who would take over from acting MCA chief executive David Byers, suggests the council is continuing the shift away from the combative approach of Mr Pearson's predecessor Mitch Hooke, who spearheaded the politically tumultuous campaign against Labor's ill-fated mining tax in 2010.

Mr Pearson took over from Mr Hooke in January 2014, just as the Minerals Council absorbed the former stand-alone Uranium Association and Coal Council on the understanding it would continue to fight for coal and nuclear power in Australia.

His departure was seen as evidence of the growing impact of the global anti-coal lobby, which is putting pressure on big producers such as BHP to withdraw from the industry.

BHP said last week that it has severed ties with the World Coal Association over differences on how to combat climate change.

The resources giant – which earns around one fifth of its revenue from coal but is moving towards zero emissions from its businesses after 2050 – said it saw little benefit from staying on as a member.

The company was particularly unimpressed with remarks by WCA chief executive Benjamin Sporton in the Financial Review last September where he backed the Turnbull government's dumping of a clean energy target.

Ms Constable would come to the Minerals Council after a lengthy career as a policymaker across resources, energy and natural gas.

She was named as chief executive of CO2CRC (or the Co-operative Research Centre for Greenhouse Gas Technologies) in late 2014 by its chairman, former Labor resources minister Martin Ferguson.

CO2CRC describes its mission as developing carbon capture and storage (CCS) as a "socially, technically and commercially viable option for net zero emissions" and references research saying it won't be possible to keep global temperatures from rising by more than 2 degrees without CCS.

The MCA is a strong supporter of CCS and its website highlights that more than $300 million has been spent on projects to demonstrate the viability of CO2 capture and storage.

Prior to that post, Ms Constable was chief adviser for Treasury's personal and retirement income division, a job with a heavy tax policy focus. She was also a senior Industry Department official for more than four years where she advised the minister on oil and gas regulation, exploration and other mining activities.

She was awarded the Public Service Medal in 2014 for her work in the creation of Australia's liquefied natural gas and other energy industries.

It is understood the search for the CEO's position is being tightly managed by the MCA board.


Jacob writes about American politics, economics and business from our Washington bureau. He earlier was the Canberra-based economics correspondent and has held reporting jobs in Sydney, Zurich and Brisbane across more than two decades. Connect with Jacob on Twitter. Email Jacob at jgreber@afr.com.au

Saturday, February 23, 2019

Successful transition from old to new technology

The transition from leaded to unleaded transport fuels begun in 1981 with a target end-date of 2002 is a good example of how the adoption of a long-term policy simplifies the making of investment decisions of stakeholders for new plant and equipment.

From a paper by Troy Whitford, Fuel Mandates have a History of Success and a Lesson for Bio Fuels Implementation. Australian Policy and History, April 2010.
URL: http://www.aph.org.au/fuel-mandates-have-a-history
"In 1981, Australian state and federal transport ministers met to address pollution problems. Driving the shift towards unleaded petrol were vast environmental and health concerns.

During the 1980s, automobile associations were critical of the introduction of unleaded fuel. The RACV opposed the implementation believing it was too costly. The oil industry was cynical, too, arguing the introduction of unleaded fuel did not follow from a technological breakthrough but rather a decision by ministers. Without doubt, the position taken by oil companies, automobile associations and other stakeholders regarding unleaded fuel changed over time.

Despite opposition to unleaded fuel, the Transportation Council adopted a program to mandate unleaded petrol by 1985. The implementation policy for unleaded fuel was undertaken in stages. Initially, regulations were made calling for all new motor vehicles made after January 1986 (manufactured within Australia or imported) to meet the new fuel requirements. The policy then called for a complete phase out of unleaded fuel by 2002. Prior to the national mandate, states had led the way on unleaded fuel of which NSW took the lead. The decision to mandate was essential for implementing unleaded fuel. It forced car manufacturers, oil producers and consumers to make the transition."
Both renewable and fossil fuel investments for generating and distributing electricity can be utilised at close to full capacity to provide electricity for recharging electric battery powered vehicles.

Both of these investments can also be used to manufacture hydrogen for fuel-cell powered electric vehicles.

Vehicle manufacturers at present face considerable uncertainty in predicting which of the emerging clean fuel transport systems will win out in the long run.

Fuel cell electric vehicle with battery for short trips
Fuel cell electric vehicle with battery for short trips

Adopting a policy for the introduction of electric vehicles would reduce that uncertainy. Allowance can still be made for competing technologies that are quickly evolving. Fuel cells for instance that produce electric power from, say, hydrogen, are not that dissimilar from batteries that store and recharge electrolyte in situ. Vehicles using either, or both, of these energy supply systems are powered by electric motors regardless of which these two evolving technologies provides the electricity. One version of electric vehicles might use a battery for short trips and activate a hydrogen fuel cell on longer trips after the battery charge is depleted.

This plan would encourage continuing expansion and technological advances in renewable energy without the need to immediately write off substantial capital invested in fossil fuel power plants.

Sunday, December 30, 2018

Hydrogen to Substitute Natural Gas

Australia recently examined the development of a hydrogen industry - Briefing Paper: Hydrogen's for Australia's Future.
Converting hydrogen to methane can reduce CO2 emissions from electricity generation - in the short term at least - while production capacity of hydrogen is growing.

The arithmetic analysis.
If a region is considering thermal power options to provide electricity, two options may be:
  1. Three coal-fired power plants running at 40% efficiency or
  2. Two combined-cycle gas turbine power stations running at 60% efficiency.
An assumption is that each power plant consumes fuel with the same amount of chemical energy.

Because the coal-fired power plants are only two-thirds as efficient as the combined-cycle gas turbine power plants, a third coal-fired power plant is needed to produce the same electricity output as the two combined-cycle gas turbine power plants.

The CO2 emissions are about 900 grams per kilowatt-hour generated for the coal-fired power plants and only 310 grams per kilowatt-hour for the combined-cycle gas turbine power plants.

NOTE: A reduction of two-thirds use of coal by 2030 is required to limit global warming to 1.5°C.
This ratio of CO2 emissions of 310 to 900 grams per kilowatt-hour is equivalent to a 65% reduction in coal use.
If sufficient hydrogen was produced to fuel one combined cycle gas turbine power plant, when three coal-fired power plants were the option being used, then one and a half coal-fired plants could be idled. This would cut coal-use in half and cut CO2 emissions from electricity generation in half. Average CO2 emissions for all electricity generation - from the coal-fired plants and the hydrogen-fueled combined cycle gas turbine power plant - would be 450 grams per kilowatt-hour.

However, if the same amount of hydrogen was reacted with carbonaceous material, such as coal, to produce synthetic methane, the resulting fuel would be sufficient to run two combined cycle power plants: all three coal-fired plants could be shut down. This would cut coal-use by two-thirds and cut CO2 emissions from electricity generation by two-thirds. Average CO2 emissions for all electricity generation - from the synthetic methane-fueled combined cycle gas turbine power plant - would be 310 grams per kilowatt-hour.

This process results in a greater cuts in CO2 emissions. It also doubles the energy value that the hydrogen possessed before it was combined with carbon to form methane.

That is, it is preferable from both commercial and environmental perspectives.

The benefits are greater than just the cuts in CO2 emissions arising from electricity generation.

In December 2018 the Australian Government released a document on projected CO2 emissions - Australia’s emissions projections  2018.
This shows substantial fugitive emissions arise from natural gas production and from coal mining.
Out to 2030, several LNG plants are expected to source gas from new basins as current feed gas sources deplete. As the percentage of CO2 is higher for some of these new feed gas sources the overall emissions intensity of Australia’s LNG projections increases which increases emissions.

Fugitive emissions for natural gas (other than LNG) are projected to be 17 million tonnes of CO2-e each year from 2018 to 2030. The fugitive emissions from LNG production are projected to rise from 11 million tonnes of CO2-e a year in 2018 to 13 million tonnes of CO2-e a year in 2030.

The Australian Government's National Greenhouse Accounts Factors - July 2017 shows fugitive emissions from open cut coal mines in NSW are 200 times greater per tonne of raw coal mined than those of open cut coal mines in Victoria. The brown coal available in Victoria is also far cheaper than thermal coal mined in NSW.

As an indication of the amounts of fugitive emissions involved: Australia burns about 60 million tonnes of black coal a year for electricity generation. If sourced from open cut NSW coal mines, the fugitive emissions would be 60 million x 0.054 = 3.24 million tonnes of CO2-e.

Total electricity generated in Australia from black coal in 2016-2017 was about 120 thousand gigawatt-hours. At an emission intensity of 900 grams of CO2-e per kilowatt-hour (1 gigawatt-hour is 1 million kilowatt-hours), the generation of this much electricity from black coal would result in annual emissions of about 108 million tonnes of CO2-e.

In  2016-2017 Australia also burned about 57 million tonnes of brown coal to generate about 44,000 gigawatt-hours of electricity. At an emission intensity of 1,100 grams of CO2-e per kilowatt-hour (1 gigawatt-hour is 1 million kilowatt-hours), the generation of this much electricity from brown coal would result in annual emissions of about 44.8 million tonnes of CO2-e.

The conversion of brown coal to synthetic methane with hydrogen would be commercially attractive in upgrading the value of this low-cost fuel stock and environmentally superior - cutting fugitive emissions that arise in both coal-mining and natural gas production.

Sunday, September 23, 2018

Small-scale gasifiers for solar hybrid gensets

So-called "intermittent" renewable energy can be used in two or more ways to make synthetic methane from any material (straw, waste plastic, coal, etc) containing carbon.

One way is to use renewable energy when supply exceeds demand to power a plasma gasifier.

Another way is to use renewable energy to produce hydrogen by electrolysis of water - and combine that hydrogen with carbon from one or more sources.

Each kilogram of wheat straw with about 7% moisture content is made of 48% cellulose by weight (of which carbon is 44%) and 25% is lignin by weight (of which carbon is 65%) ... (((1000 x (48 / 100) x (44 / 100)) + (1000 x (25 / 100) x (65 / 100))) = 374.

That is 374 grams of carbon in each kilogram - sufficient to manufacture about 500 grams of synthetic methane which has a heating value of 50-55.5 megajoules per kilogram (MJ/kg).

The carbon in 2 tonnes of wheat straw would be sufficient to manufacture 1 tonne of methane with a heating value of 50-55.5 gigajoules (GJ). Natural gas has a wholesale price of $10-$12 per gigajoule in Australia. 

Over 500 million tonnes of wheat straw are produced annually world, the majority of which are burnt in the field. See "Physical Properties of Wheat Straw Varieties", American Journal of Engineering and Applied Sciences, 2012, 5 (2), 98-106.

Small-scale biomass gasifiers are one more renewable energy generation option for Australian farms that need affordable, reliable 24 hour a day electricity supplies.

For example, a seller on Alibaba in China has a biomass gasifier offered for $500 - $1,000 per unit.
Environment Friendly Biomass Gasifier
Environment-Friendly Biomass Gasifier

Another offers gas-fueled electric generators for $550 - $1,250 per unit.

Teenwin biogas electric generator

Teenwin biogas electric generator


Thursday, September 20, 2018

Fossil fuel industry opposes innovation

The World Coal Association ignores innovations to reduce electricity prices, raise efficiency and reduce emissions.

Technology now available allows reliable electricity to be generated with just one-third of the coal burned in "High Efficiency, Low Emission" (HELE) coal-fired power plants.

The World Coal Association had called for investment in development of technology for cleaner coal in 2015. Now that technology is available, the World Coal Association has slammed a moratorium on its use.


The natural gas industry also opposes innovations to reduce energy bills and avoid the need for ever more costly drilling and fracking.
Beyond HELE - thermal power generation technology
Beyond HELE - thermal power generation technology
Carbon from many different substances can be combined with hydrogen to produce methane.
When methane is used to fuel an Ultrahigh Temperature Gas Turbine Combined Cycle power station, carbon dioxide emissions are 310 grams per kilowatt-hour.

The amount of carbon needed for each kilowatt-hour from any power station can be calculated if the carbon dioxide intensity is known. Each 44 grams of carbon dioxide contain 12 grams of carbon. The other 32 grams are oxygen.

The Ultrahigh Temperature Gas Turbine Combined Cycle power station needs methane made with 310 x (12 / 44) grams of carbon for each kilowatt-hour of electricity. That is 85 grams of carbon for each kilowatt-hour.

Some other power station technologies need a lot more carbon for each kilowatt-hour of electricity generated.

When coal is used to fuel a high-efficiency low-emission "HELE" ultra-supercritical coal-fired power station, carbon dioxide emissions are 900 grams per kilowatt-hour. The amount of carbon in the coal needed for each kilowatt-hour of electricity generated is 900 x (12 / 44) grams. That is 245 grams of carbon for each kilowatt-hour.

Some other common materials contain carbon that can be used to produce methane.

Each 28 grams of waste polyethylene plastic (C2H4)n contain 24 grams of carbon and 4 grams of hydrogen.

Each kilogram of wheat straw with about 7% moisture content is made of 48% cellulose by weight (of which carbon is 44%) and 25% is lignin by weight (of which carbon is 65%) ... (((1000 x (48 / 100) x (44 / 100)) + (1000 x (25 / 100) x (65 / 100))). That is 374 grams of carbon in each kilogram.

Choosing whether to burn 245 grams of carbon in coal or just 85 grams of carbon in methane to produce each kilowatt-hour of electricity seems to have only one obvious answer.

The World Coal Association simply refuses to answer this question.

Representatives of the gas industry also refuse to answer this question.

So-called "intermittent" renewable energy can be used in two or more ways to make synthetic methane from any material (straw, waste plastic, coal, etc) containing carbon.

One way is to use renewable energy when supply exceeds demand to power a plasma gasifier.

Another way is to use renewable energy to produce hydrogen by electrolysis of water - and combine that hydrogen with carbon from one or more sources.

As well as industry refusing to answer simple questions about innovation, the Australian Government tries to sell gas exploration rights to the gas industry even though this old method of obtaining natural gas - which is mostly methane - is no longer needed.



The Western Australian Government is also reviewing this obsolete method of obtaining methane in considering whether to sell "fracking" rights over large swathes of Western Australia.


Small-scale biomass gasifiers are one more renewable energy generation option for Australian farms that need affordable, reliable 24 hour a day electricity supplies. For example, a seller on Alibaba in China has a biomass gasifier offered for $500 - $1,000 per unit.

Monday, September 3, 2018

Saving $1 million allocated to reinvent the wheel

The Australian Government announced it was allocating another $1 million for research into ways to make something useful from brown coal reserves in Victoria.

Coal has a future in Victoria: Matt Canavan

Senator the Hon Matt Canavan
Minister for Resources and Northern Australia

Investing in brown coal research and development

31 August 2018

The Coalition Government continues to focus on harnessing the economic benefits that can come from the nation’s vast brown coal resources by making $1 million in funding available to Brown Coal Innovation Australia (BCIA).

BCIA will use the funding to focus on advancing Australia’s economic prosperity by researching low emissions technologies for both electricity generation and products derived from brown coal.

Minister for Resources and Northern Australia Matt Canavan said BCIA was at the forefront of research into low-emissions, low-cost, coal technologies and novel, high-value products derived from brown coal. Since 2009, the Government has provided more than $7 million to BCIA through the Commonwealth’s funding of the Australian National Low Emissions Coal Research and Development initiative.
...
This funding comes on top of the $620 million already being administered by the Australian Government to accelerate the deployment of low emission fossil fuel technologies.

Australian Governments have been "investing" in "harnessing the economic benefits that can come from the nation's vast brown coal resources" long before 2009.

For over thirty years no progress has been made.

Victoria's brown coal in the Latrobe Valley still has a moisture content of more than 50%:
Moisture content of raw coal Wt(%)

Research is still fixated with the presumption that before any value can be made of this vast resource that "coal drying is essential":
Coal drying is essential...

In 2012 the US granted a patent for converting 'wet carbonaceous material' (such as "brown coal") to methane:

Method and apparatus for steam hydro-gasification with increased conversion times

 Patent: US8143319B2

Abstract







A method and apparatus for converting carbonaceous material to a stream of carbon rich gas, comprising heating a slurry feed containing the carbonaceous material in a hydrogasification process using hydrogen and steam, at a temperature and pressure sufficient to generate a methane and carbon monoxide rich stream in which the conversion time in the process is between 5 and 45 seconds.

It could be applied in a plant with a design such as the following, or one that uses hydrogen produced by electrolysis from renewable energy in place of the steam reforming unit, or one that produces any combination of hydrogen and/or synthetic natural gas:
Converting brown coal - without drying - to methane (and/or hydrogen)
Converting brown coal - without drying - to methane (and/or hydrogen)