Latest Buzz...
                  

Translate

Thursday, March 23, 2017

Energy cost savings in industry

Increases in energy costs are a signal for industry to audit its energy use and survey new plant that lowers energy use.

The abalone industry in South Australia in December 2016 received quotes for electricity supply at almost double its previous contract price:
Yumbah Aquaculture at Port Lincoln, on South Australia’s west coast, received an electricity contract quote for $1.35 million, $650,000 more than its current $700,000 contract.
Also in December 2016 the South Australian State Government announced a program to assist large businesses to audit energy use and invest in energy saving measures -
The 2016-17 Mid Year Budget Review provides $31 million over two years to help large South Australian businesses manage their electricity costs.

The Energy Productivity Program will be available to businesses that use more than 160MWh of electricity each year to incentivise investment in energy saving measures.

The funding will be available for businesses to undertake energy audits of their facilities to determine where efficiencies can be made.

The audits will also make recommendations about technology or infrastructure upgrades that could be carried out to reduce cost and grants will be available to implement the those recommendations. 
One area to examine in an energy audit at Yumbah Aquaculture is the circulation of  water from sea level up to its abalone growing tanks and back into the sea. The energy needed for pumps to raise water by, say, 20 metres is the same as the energy that is available when the same volume of water falls by 20 meters. Adding a micro hydro generator on the outflow from abalone growing ponds could generate almost as much energy used by the pumps to raise the water.


The value of the energy savings may make it worthwhile to invest in a micro hydro generator.


The food processing industry in Victoria has received quotes for natural gas with prices more than doubling in just a few years.
Echuca-based food processor Kagome expects to pay $3.6 million for gas this year, up from $2.4 million last year, despite plans to use less gas. Kagome employs more than 200 people. 
Natural gas is the dominant form of energy use for the food processing plant at KAGOME Australia
Natural gas is the dominant form of energy use for the food processing plant at KAGOME Australia
Kagome Australia's processing plant receives about 4,000 tonnes of tomatoes each day during the harvest period of 70 days. Natural gas is used to evaporate water from the tomatoes for the production of tomato paste.

Evaporating 1,000 tonnes of water from 4,000 tonnes of tomatoes each day can use an enormous amount of energy. This isn't necessary but it depends on how it is done.

One way to evaporate 1,000 tonnes of water that does use an enormous amount of energy is to simply put batches into large cauldrons with gas burners beneath them. Allow the tomatoes in the cauldrons to simmer until the desired volume of water has evaporated.

This way requires 2,257 gigajoules of thermal energy that converts 1,000 tonnes of water into steam. If this heat energy is supplied by natural gas costing $9 per gigajoule, the daily energy bill would be about $20,000 and the total bill over the tomato harvest period of 70 days woul be about $1.4 million.

There are several other ways to perform the same process using much less energy.

For instance, the energy needed to convert 1 kilogram of water into water vapour is 2,257 kilojoules. The same amount of energy can be recovered when that kilogram of water vapour is condensed back into water.
Mechanical Vapour Recompression (MVR)
Mechanical Vapour Recompression (MVR)

The mechanical vapour compressor uses a very small amount of electrical energy to transfer a very large quantity of heat energy from the condensing steam back into the cauldron of tomatoes where it boils off an identical amount of water.
The cost saving of this method is all of the natural gas used in the inefficient method of converting 1,000 tonnes of water into water vapour. This method also produces distilled water while continually recycling the latent heat of evaporation in the water vapour as it condenses back into water.

The condensed water produced may have some value too as a pure, distilled by-product.

Equipment using this method is commercially available. One type is marketed as "forced circulation evaporators". These are for concentrating fruit paste (tomato paste, peach paste, apricot paste and etc.) and some other products with high viscosity. Another type is marketed as "falling film evaporators". These are for concentrating products with low viscosity, for example: fruit juice, milk etc.

The value of the energy savings may make it worthwhile for Kagome Australia to invest in a forced circulation evaporator and eliminate the need for natural gas.

Monday, March 13, 2017

Even more ways for energy storage

When people think 'energy storage' batteries often are the first option that comes to mind.

A battery that has been discharged down to 25 percent of its capacity may hold, say, 3.6 gigajoules of electrical energy. 'Recharging' the battery, adding more energy, could increase the energy stored to, say, 14.4 gigajoules of electrical energy. This is the same as 4 megawatt-hours of electricity.

Another option for energy storage doesn't need a battery.

Think of brown coal as a 'battery' that has been almost completely discharged.

The amount of brown coal that can deliver 3.6 gigajoules of electrical energy - if it is burned in a coal-fired power station - contains about 380 kilograms of carbon.

Instead of burning the brown coal, energy can be added, in a similar way a battery can be 'recharged', so that it can deliver 15.5 gigajoules of electrical energy when needed - if it is burned in a combined-cycle gas turbine power station.

There's no need to understand the chemical reactions in a battery when it is being charged and discharged. There are many types of batteries and the chemicals and chemical reactions in each type are quite different.

When renewable energy is stored by adding it to brown coal, chemical reactions also take place, and achieves the same result as recharging a battery - but without the need for the battery.

Simplified process flow diagram of the supercritical gasification system developed by Gensos.
Simplified process flow diagram of the supercritical gasification system developed by Gensos.

Saturday, March 4, 2017

Fossil fuel energy is unreliable

Natural gas power is increasingly unreliable in Australia.

A simple law of physics explains why natural gas power stations are unreliable:
6 gigajoules of natural gas are needed to generate 3.6 gigajoules of electrical energy in a combined-cycle gas turbine power station.

Each 3.6 gigajoules of electrical energy (which is 1 megawatt-hour or 1 MWh) has a price of about $50 in the Australian Energy Market Organisation's National Electricity Market.

The natural gas used to generate this electrical energy costs about $9 per gigajoule in the Australian Energy Market Organisation's Wholesale Gas Market.

The result:
It costs about $54 for the natural gas used as fuel to generate each megawatt-hour of electricity. This has a wholesale price of only $50.

Rising domestic gas prices

In terms of production costs, over the last decade the finding and development costs for the petroleum industry have increased six-fold. And, in the three years to 2013, total Australian finding and development costs averaged $4.16/GJ, which was 2.7 times the average for the three years to 2007. These rising costs are partly explained by the fact that unconventional gas production involves significantly higher capital expenditure than that of conventional off-shore wells, given that CSG requires multiple wells to be drilled in order to access equivalent volumes of gas.

SANTOS July 2, 2015
Public Submission to ACCC East Coast Gas Inquiry

Natural Gas price in the U.S. - 1 million BTUs = 1.055 gigajoules
Natural Gas price in the U.S. - 1 million BTUs = 1.055 gigajoules


The projected US exports of around 7 trillion cubic feet of natural gas, or about 140 million tonnes of LNG is almost double the projected Australian exports of 85 million tonnes of LNG per year.

1 metric ton liquefied natural gas (LNG) = 48,700 cubic feet of natural gas.
1 trillion cubic feet of natural gas is about 20 million tonnes of LNG.

Given the much higher cost of producing coal seam gas in Australia, the ramping up of US LNG exports to 2020 is likely to bring the enthusiastic expansion of coal seam gas in Australia to a sudden end.


Wednesday, February 8, 2017

LNG exports and heatwaves drive up energy costs



The Australian Government's LNG export policy - with no reservation for industry and residential consumers - has resulted in a 250 percent increase in the cost of natural gas since 2014. The resulting $8.60 per gigajoule price for natural gas makes efficient, low emission combined cycle gas turbine (CCGT) power stations like that at Pelican Point, South Australia, quite costly to run compared to a high emission low efficiency (HELE) coal-fired power station.

The raucous noise over renewable energy in South Australia and the upsurge in government members spruiking high emission low efficiency (HELE) coal-fired power stations is most likely a deliberate distraction from this fiasco that is the government's "sell-it-all" LNG export policy.

AEMO Short Term Natural Gas Trading Market Quarterly Average Price


Gladstone LNG plant places a demand on gas from NSW and elsewhere

Energy Action | Feb 19, 2016

Gas flows on the Moomba-to-Sydney gas pipeline has supplied NSW with gas since 1976. However, according to data from the Australian ­Energy Market Operator (AEMO), the flow was reversed in December for the first time as the third of three gas export projects being built at Gladstone powered up.

New Moomba Gas Supply Hub launched

MEDIA RELEASE - AEMO
Wednesday, 1 June 2016

The Australian Energy Market Operator (AEMO) has today announced the launch of the newly established Moomba Gas Supply Hub and two additional trading locations at the Moomba to Adelaide pipeline and the Moomba to Sydney pipeline, which are now open for trading.

The Moomba Gas Supply Hub follows the successful introduction of the Wallumbilla Gas Supply Hub (GSH), established in 2014 to enhance the transparency and reliability of gas supply by creating a voluntary market that offers a low-cost, flexible method to buy and sell gas at interconnecting transmission pipelines.

Gas and LNG Market Outlook, January 2017

National Australia Bank

The exposure of eastern Australia to LNG export markets will have far reaching implications for domestic gas use.

Wholesale prices are likely to increase significantly and some questions remain over availability of commercially recoverable gas from Queensland coal seam gas fields.

Higher wholesale gas prices are likely to spill over into electricity markets by increasing fuel costs for peak load open cycle gas turbines.

Higher gas prices are already flowing through to large domestic customers, with reports that contracts are being offered well in excess of current netback export parity prices.

The price of gas for residential customers in Australia’s five largest cities could increase by more than 50% by 2020.


Boyne Smelter to close cells, cut production after power price spike

Tegan Annett | 21st Jan 2017, Updated: 23rd Jan 2017
Gladstone Observer

IF nothing changes in Queensland's electricity market, 40 aluminium-producing cells at Boyne Smelter will be closed.

That's the message from general manager Joe Rea who says it will result in jobs lost and leave the Boyne Smelter down 45,000 tonnes in aluminium production.

The price hike was driven by high electricity demand in response to very hot weather conditions in Queensland. He said on January 18, a new demand record was set at 9,357MW exceeding the previous record of 9,097MW.

Queensland moves to reserve gas for domestic use

Matt Chambers | 26th Jan 2017
The Australian

Gas producers have voiced alarm at Queensland’s move to earmark a small patch of new exploration ground for domestic use, although former federal resources ministers and previously staunch domestic gas reservation opponents Ian Macfarlane and Martin Ferguson have changed their position and now back the move.

Queensland Resources Minister Anthony Lynham yesterday announced the release of 58sq km of exploration ground in the onshore Surat Basin with the “strict” condition that any gas produced must be used in Australia.

The Queensland Resources Council, which counts both the big gas exporters and some big gas users (such as Incitec Pivot, Rio Tinto and Glencore) among its members and is now run by Mr Macfarlane, applauded the move.

Saturday, February 4, 2017

Searing heat years too soon for salad growers

The third heatwave in two months has hit salad growers in Queensland's south hard, with many farmers battling to harvest 30 per cent of their crop.
Farmer Clem Hodgman said he has been losing about 50,000 lettuces and 25,000 cauliflowers a week at his property near Toowoomba.
"The temperatures are so high, crops are burning off in the fields."
He said while prices were rising in supermarkets, farmers would not reap the benefit as energy and water costs rose accordingly.
"We don't want another summer like this for many, many years," he said.
But Rachel Mackenzie from farm lobby group Growcom said the heat could be the new norm.
She said an industry study into heat impacts on the salad industry did not predict such high temperatures for another 13 years.
"We were looking at 2030 in terms of when some of these thresholds would be reached," she said.
"This could be our new reality. We've had three years in a row where we've had significant heat, and we need to start saying what can we do to make sure we have the right [ways] to deal with this."


Birdsville sweats out record

The record for hottest February day in Birdsville in the state's far south-west has been broken, with Bureau of Meteorology (BOM) figures showing the mercury in the town hit 46.2 degrees Celsius at 4:10pm.
Previously, Birdsville's hottest February day was 45.8C in 2006.
The all-time record at Birdsville airport was 49C in January 2013.
More temperature records could be broken next week unless a high pressure system over the Tasman Sea arrives to cool things down.
The hot weather is the continuation of a low pressure surface trough over southern Queensland that contributed to higher than average temperatures in January.
Overnight minimums in January were the highest on record for a large area of southern Queensland, while maximum temperatures were in the highest 10 per cent of historical records for nearly all of the state's southern half.
The mercury peaked at 39.1C in Warwick on the Southern Downs yesterday, more than 10C above average.
BOM forecaster Vinord Anand said it was the hottest February day in the town since records began more than 50 years ago.
"The record before yesterday was 39 degrees, which was in February 1983," he said.
Applethorpe hit a scorching 36.8C, more than 11C above average.
"The last time it was nearly that hot was in February, also in 1983, when it was 36.1C," Mr Anand said.
The all-time maximum record for Applethorpe is 37.8C, while in Warwick it is 41.7C.
Mr Anand said it had cooled down slightly in the region today, with Applethorpe reaching 25C by 11:00am.
"It's cooler today in those areas compared to yesterday, but we do expect it to warm up again into the weekend and next week," he said.

Friday, January 27, 2017

Coal hard cash

India builds a low-efficiency, high emission (LEHE) coal-fired power station for Bangladesh


This is not so good for the Bangladesh economy and its environment. But it's not all bad news: the Government of India is lending Bangladesh the money for the project that will create jobs for India and boost India's economy.
Maitree Super Thermal Power Project gets cashed up
Business run by Indian Government bags Maitree Super Thermal Power Project contract

Ultra-supercritical tech won't be used in Rampal plant: official
October 31, 2016

Environmentalists have been pressing the government to relocate the Rampal power plant arguing that emissions of the power plant, and transportation and handling of coal through the Sunderbans would destroy the biodiversity of the world’s largest mangrove forest.

In the backdrop of severe criticism against the Rampal power project, the government has been claiming that it would use ‘ultra-supercritical’ technology which would put minimum impact on the Sunderbans, only 14km off the location of the power plant in Bagerhat.

Bangladesh-India Friendship Power Company Limited managing director Ujjal Kanti Bhattacharya told New Age on October 27, ‘The term ultra-supercritical has been made popular by the manufacturers of steam generators for commercial purposes.’

A top official of Bangladesh Coal Power Generation Company, which would implement Matarbari 1,200MW coal-fired power project, said that they would use supercritical technology and there was nothing called ‘ultra-supercritical’ technology in coal fired power generation.

Contract signing for Maitree Super Thermal Power Project
July 13, 2016

"I am extremely happy that Bharat Heavy Electrical Ltd has been awarded the engineering, procurement and construction (EPC) contract for the 2 X 600 MW Maitree Super Thermal Power project (also known as the Rampal power station) in Rampal (a small village in Bangladesh)."

Financing for the project has been arranged by EXIM Bank under the special financing package for strategic projects approved by the Government of India.

BHEL bags NTPC's Bangladesh project
July 14, 2016

Indian public sector company, Bharat Heavy Electricals Ltd (BHEL), has bagged the engineering, procurement and construction contract for a 1,320 megawatt power station for Bangladesh-India Friendship Power Company (BIFPC).

BIFPC is a 50:50 joint venture floated by Bangladesh Power development Board and Indian public sector company National Thermal Power Corporation (NTPC) of India. The company signed a contract agreement for the main plant engineering, procurement and construction contract on a turnkey package with BHEL India to construct the 2 X 600 MW Maitree Super Thermal Power Project...

...The contract value of the project is $1.49 billion which will be financed by Indian EXIM Bank. The plant is expected to start generation during 2019-20.

The Export-Import Bank of India - Indian Exim Bank

Export-Import Bank of India (EXIM Bank) is a specialized financial institution, wholly owned by Government of India, set up in 1982, for financing, facilitating and promoting foreign trade of India.

Bharat Heavy Electricals Ltd - BHEL

The Indian Government's Department of Heavy Industry is concerned with the development of the Heavy Engineering and Machine Tools Industry, Heavy Electrical Engineering Industry and Automotive Industry. It administers 32 Central Public Sector Enterprises (PSEs), including Bharat Heavy Electricals Limited (BHEL) of which the Government of India is the majority shareholder.

China builds a low-efficiency, high emission (LEHE) coal-fired power station for Pakistan


China strong-arms 'all-weather friend' Pakistan on coal power project
January 26, 2017

China has strong-armed 'all-weather friend' Pakistan to scale back up a coal-fired power project in Balochistan, Dawn reported.

In November, Pakistan had scaled down its Hub power project - that was to be run on imported coal -from 1,320MW plant to 660MW. This was as part of an overall decision to restrict power plants based on imported fuels. The project is being developed by a consortium of Hub Power Company and China Power International Holding Company at an estimated cost of $2.5 billion, Dawn said.

"The Chinese side is reported to have told Pakistan that commercial viability of the Hub power project on supercritical technology was possible only with 1,320MW for which it had also been given tariff by the National Electric Power Regulatory Authority on the request of the government of Pakistan," the newspaper said.

Thursday, January 26, 2017

Last days of coal on planet earth

World Energy Outlook 2016

Could cutthroat competition prolong the coal industry crisis?


The global coal market is suffering from excess capacity and low prices. Although many mines have been idled or closed, the effect on markets has been more than offset by expanding production from lower cost producers which effectively impeded the market from finding its way back to balance. Prices bottomed out in early 2016 and have recovered since then but, given the dire financial situation of many coal companies in late 2015, the price recovery has only just started to lift producers out of the red. The majority of Chinese coal firms still remain unprofitable and the future of the fifty US coal companies that are under bankruptcy protection is uncertain. Producers targeting the international market are now largely covering their cash costs, but profit margins remain slim (with the exception of coking coal).

The answers as to why coal companies keep on churning out coal despite losing money are many


The answers as to why coal companies keep on churning out coal despite losing money are many. Much has to do with the cost structure of the industry in which the bulk of the costs are variable rather than fixed. As long as prices exceed the variable costs, operating assets contribute to service liabilities or take-or-pay obligations. Additional debt, unless lenders pull out, can keep companies going for a long time, despite increasing the companies’ liabilities and thus worsening the situation. Another part of the answer lies with market expectations. Like other extractive industries, the coal industry is used to business cycles with extended boom-and-bust periods. Many company executives believe that current losses will be more than offset once the market tightens and that keeping assets operational will pay off in the future.

Competition in the coal industry leads to producers cutting prices in the hope that their rivals will have to exit the market. Economic theory suggests that this triggers an adjustment process in which excess capacity is shed and only the most efficient producers survive. However, collective over-optimism in the industry is capable of delaying this adjustment. This notion is not incompatible with a general expectation in the industry of decline; it simply means that the industry consistently acts as if it expects a better outcome than what turns out in the future.

The coal industry is often a major employer. High unemployment in a coal producing country could trigger a downward spiral in wages (or other employee benefits), as a low income is preferable to unemployment if chances of finding a new job are slim. This effect lowers the cost base and gives companies additional headroom to stay in business and further cut prices. As well, the costs of closing a mine or transferring it to care and maintenance may be significant; as long as the mine is just able to cover its variable costs, the company may want it to keep producing.

These potentially detrimental effects of too much competition are difficult to counteract; market-based mechanisms, such as price floors and scrappage bonuses are unlikely to have the desired effect. The Chinese are tackling the problem through direct intervention: in the period to 2020 up to 1,000 million tonnes per annum of coal mining capacity is to be shed. Successful implementation of these measures underpins our projections for China, while the outcome for many other regions rests on market forces restoring a broad market balance by the mid-2020s. Failure to reduce excess capacity or delays in the process, whether market led or administratively managed, could significantly prolong the current industry crisis and leave coal prices at rock bottom for much longer than is projected in the New Policies Scenario.

First published by the International Energy Agency, November 2016 (pages 220-221)