Latest Buzz...
                  

Translate

Showing posts with label Clean coal. Show all posts
Showing posts with label Clean coal. Show all posts

Wednesday, March 4, 2020

Japanese clean coal project



JAPANESE ‘CLEAN COAL’ DEMONSTRATION PROJECT TAKES A STEP FURTHER

By Tetsuo Satoh | 

Construction has begun on the third step of a project to demonstrate the world’s first integrated coal-gasification fuel-cell (IGFC) combined cycle power plant with CO2 capture. The five-year, $73.3-million project is a collaboration of the New Energy and Industrial Technology Development Organization (NEDO; Kawasaki City; www.nedo.go.jp) and Osaki CoolGen Corp. (Hiroshima Prefecture, both Japan; www.osaki-coolgen.jp). IGFC technology has the potential to reach a 55% thermal efficiency (higher heating value; HHV).
The IGFC demonstration project is composed of three steps (diagram): (1) the demonstration of oxygen-blown integrated coal-gasification combined-cycle (O2-blown IGCC), which was completed in March 2019; (2) the demonstration of O2 -blown IGCC with CO2 separation and capture, which started in December 2019; and (3) the demonstration of IGFC with CO2 separation and capture.
clean coal
For the first step, a 170,000 kW-class demonstration test facility was constructed within the grounds of the Osaki Power Station of The Chugoku Electric Power Co. During the demonstration tests, coal particles were used to operate a 1,300°C-class gas turbine, while using the heat generated to operate a steam turbine for combined-cycle power generation. The performance, operability, reliability, and economic feasibility as a coal-fired power generation system was verified. The targeted thermal efficiency of 40.5% HHV was achieved for an O2-blown IGCC using a 100°C-class gas turbine. They are forecasting a net thermal efficiency of approximately 46% will be achieved for a commercial plant that uses a 1,500°C-class gas turbine. Based on these results, they are expecting to reduce CO2 emissions by about 15% compared to ultra-supercritical (USC) pressure pulverized-coal-fired power generation.
To demonstrate the second step, construction work on the CO2-capture unit was completed last summer, and testing started in December 2019 and will continue through 2020. Meanwhile, construction has also begun on the third step, in which the fuel cell will be added to the O2-blown IGCC to demonstrate the complete IGFC with CO2 capture, which should begin late 2021 and run through 2022. Ultimately, the project aims to achieve a net thermal efficiency of approximately 47%, while capturing 90% of the CO2, and a 40% of transmission end efficiency when applied to a 500-MW-class commercial unit.

Thursday, September 20, 2018

Fossil fuel industry opposes innovation

The World Coal Association ignores innovations to reduce electricity prices, raise efficiency and reduce emissions.

Technology now available allows reliable electricity to be generated with just one-third of the coal burned in "High Efficiency, Low Emission" (HELE) coal-fired power plants.

The World Coal Association had called for investment in development of technology for cleaner coal in 2015. Now that technology is available, the World Coal Association has slammed a moratorium on its use.


The natural gas industry also opposes innovations to reduce energy bills and avoid the need for ever more costly drilling and fracking.
Beyond HELE - thermal power generation technology
Beyond HELE - thermal power generation technology
Carbon from many different substances can be combined with hydrogen to produce methane.
When methane is used to fuel an Ultrahigh Temperature Gas Turbine Combined Cycle power station, carbon dioxide emissions are 310 grams per kilowatt-hour.

The amount of carbon needed for each kilowatt-hour from any power station can be calculated if the carbon dioxide intensity is known. Each 44 grams of carbon dioxide contain 12 grams of carbon. The other 32 grams are oxygen.

The Ultrahigh Temperature Gas Turbine Combined Cycle power station needs methane made with 310 x (12 / 44) grams of carbon for each kilowatt-hour of electricity. That is 85 grams of carbon for each kilowatt-hour.

Some other power station technologies need a lot more carbon for each kilowatt-hour of electricity generated.

When coal is used to fuel a high-efficiency low-emission "HELE" ultra-supercritical coal-fired power station, carbon dioxide emissions are 900 grams per kilowatt-hour. The amount of carbon in the coal needed for each kilowatt-hour of electricity generated is 900 x (12 / 44) grams. That is 245 grams of carbon for each kilowatt-hour.

Some other common materials contain carbon that can be used to produce methane.

Each 28 grams of waste polyethylene plastic (C2H4)n contain 24 grams of carbon and 4 grams of hydrogen.

Each kilogram of wheat straw with about 7% moisture content is made of 48% cellulose by weight (of which carbon is 44%) and 25% is lignin by weight (of which carbon is 65%) ... (((1000 x (48 / 100) x (44 / 100)) + (1000 x (25 / 100) x (65 / 100))). That is 374 grams of carbon in each kilogram.

Choosing whether to burn 245 grams of carbon in coal or just 85 grams of carbon in methane to produce each kilowatt-hour of electricity seems to have only one obvious answer.

The World Coal Association simply refuses to answer this question.

Representatives of the gas industry also refuse to answer this question.

So-called "intermittent" renewable energy can be used in two or more ways to make synthetic methane from any material (straw, waste plastic, coal, etc) containing carbon.

One way is to use renewable energy when supply exceeds demand to power a plasma gasifier.

Another way is to use renewable energy to produce hydrogen by electrolysis of water - and combine that hydrogen with carbon from one or more sources.

As well as industry refusing to answer simple questions about innovation, the Australian Government tries to sell gas exploration rights to the gas industry even though this old method of obtaining natural gas - which is mostly methane - is no longer needed.



The Western Australian Government is also reviewing this obsolete method of obtaining methane in considering whether to sell "fracking" rights over large swathes of Western Australia.


Small-scale biomass gasifiers are one more renewable energy generation option for Australian farms that need affordable, reliable 24 hour a day electricity supplies. For example, a seller on Alibaba in China has a biomass gasifier offered for $500 - $1,000 per unit.

Friday, August 3, 2018

Transition from thermal coal exports

Australia exports 200 million tonnes of thermal coal each year.

Japan is the largest importer, importing 80 million tonnes per year. In planning to eliminate its reliance on fossil fuel imports, Japan is looking to CO2-free hydrogen to replace its imports of coal and LNG, used primarily for electricity generation, and oil, used primarily for road transport.

One step in the 20-year transition timetable is to invest in large solar PV installations in Saudi Arabia and construction of a 'hydrogen pipeline" to deliver hydrogen produced by electrolysis to Japan.

Another step is the construction of combined-cycle gas turbine power stations that have integrated gasification plants to convert imported coal to gas to fuel them. These plants can later run on hydrogen when sufficient supply is available.

Australia and Japan could co-ordinate projects in this transition of Japan's energy systems.
One of the benefits of co-ordination is that Australia's industry and workforce has a planned transition in how it prepares energy for export, adapting employment skills and infrastructure as the plan progresses.

Another of the benefits is that part of the infrastructure development is undertaken by Australia, sharing the effort so that Japan can focus its investments on the most efficient technology to use the energy it imports.

The long-term transition would see Australia's coal export terminals replaced with hydrogen export facilities and the fleet of bulk ore carriers replaced with specialised hydrogen shipping vessels. The coal mining workforce would gradually be replaced with a workforce that constructs and operates hydrogen production plants.

During the early years of the transition it may be beneficial to convert hydrogen and coal to methane and make use of existing natural gas pipelines, LNG export terminals and LNG tankers to transport the hydrogen to Japan's existing LNG import facilities.

One benefit for Japan would be to avoid the time and cost of building integrated coal-gasifiers with new combined-cycle gas turbine power stations and fuel cell generators. The gasification can be carried out in Australia before exporting the coal with hydrogen as LNG.

Large-scale solar farms are currently built with inverters that are a significant part of the cost.
The inverters change direct-current electricity produced by the solar panels into alternating-current electricity for distribution on the electricity grid.

Inverters aren't needed when the goal is to produce hydrogen by electrolysis with the electricity generated.

A second income-stream from renewable electricity production will assist farmers struggling with drought near coal-mining regions. Solar PV installations could be designed to be "stock-friendly" for Australian livestock producers, and not copies of European installations where fields are covered with closely-spaced solar panels just above ground level.

Cattle and solar PV systems
Cattle and solar PV systems


The renewable energy generated would be fed to electrolysis units creating hydrogen.
The hydrogen is to be transferred into methanation units that have pulverised coal handling equipment where the hydrogen and coal is transformed into methane, ready for transfer to LNG export terminals.

Thyssenkrupp coal handling system
Thyssenkrupp coal handling system
Gasification technologies
Gasification technologies


See Thyssenkrupp Australia - "Power-to-gas: Storing wind and sun [energy] in natural gas"

Power-to-gas: storing wind and sun renewable energy in natural gas

The 2015 Japanese government report "Overview of Assessment by Power Generation Cost Verification Working Group", Institute of Energy Economics, Japan (IEEJ) explained that renewable energy costs are higher in Japan than in other countries, and showed Australia has a comparative advantage in large-scale wind and solar installations.
"Unit construction costs for solar PV and wind power generation systems in Japan are higher than in other countries. ...Apparent factors behind the cost gap include higher personnel costs, complex topography and FIT scheme introduction backgrounds in Japan." (at pages 8-9)

International comparison of unit construction costs for solar PV generation systems

Related posts:

Australian energy exports

Keeping waste plastic out of landfill

 


Thursday, July 12, 2018

Coal burns up research millions

If an industry needs to separate CO2 from different sources the first place to look is existing suppliers and projects that use their technology.

Reinventing the Wheel

Reinventing the wheel
"...the investment in research programs will yield industry
applicable technologies and methodologies in the near term."

Australian governments are spending millions to find out how to separate CO2 from different sources. This process is commonly referred to as "reinventing the wheel".

Why this is so remains an unexplained mystery.

"...our capture research has also made progress on several fronts. CO2CRC won a competitive $1.2 million grant from the NSW government’s Coal Innovation Fund to develop cost-effective carbon capture technology at the Vales Point power station in NSW. The plant has been relocated from the closed Hazelwood power station in Victoria to Vales Point and is currently being modified to use both solvent and membrane technologies. The funding enables us to combine the advantages of both solvent absorption and membrane gas separation methods of capturing CO2, while overcoming the drawbacks of both technologies.

Capture projects were also significantly enhanced in October when we installed our proprietary capture skid at the Otway National Research Facility. The capture plant has been designed for use in offshore natural gas applications, with varying percentages of CO2 content. It has been made to be robust, small and efficient, and will also applicable to different capture requirements in the future.

These developments are the result of our deep commitment to cutting-edge research. In 2016-17 we extended our research base through the opening of several new Australian CCS Research Laboratories Network (CCSNet) facilities.

In September 2016, we opened new capture, CCS modelling, and storage laboratories at The University of Melbourne.

The $7.56 million facility was opened just 12 days after the Minister for Infrastructure and Transport, the Hon Darren Chester MP, opened CCSNet’s $2.3 million analytical laboratory at Federation University.

And, in November, the Minister for Education and Training, Senator the Hon Simon Birmingham, opened our $5.04 million storage research facilities at the Australian National University.

As CCS research gains momentum, we also remain focussed on ensuring government and key decision makers understand the value that CCS has to Australian emissions reduction and national energy security. Our detailed and costed retrofit studies, submissions to government and presentations to senior decision makers were well received by governments.

With the commitment from staff, the collaboration of our research partners and the support of our members and the community, CO2CRC has reached a pivotal point where the investment in research programs will yield industry applicable technologies and methodologies in the near term. Thank you for sharing our vision for CCS.

Tania Constable
Chief Executive Officer
CO2CRC Annual Report 2016/17

Saturday, June 3, 2017

Does Australia have the world's silliest mining industry?

Setting a new benchmark in silliness, the Australian mining industry made not one, not two, but three laughable media releases last month.


On 11 May 2017 Minerals Council of Australia made a bold "projection" on the future of coal mining in Australia. The "projection" made from data from the Resources and Energy March Quarterly of a government department report was that the coal industry had a great future - at least until 30 June 2017 - when the value of exports of thermal and metallurgical coal was expected to be almost $55 billion.

Not many investment decisions are made on the basis of a "projection" of the final two months of the current fiscal year. On this "projection" the Minerals Council of Australia made the silly declaration: "Myth 1 Australia's thermal coal exports are in decline...BUSTED "

The Resources and Energy March Quarterly the Minerals Council of Australia thought worthy of quoting contains real projections for the value of Australia's coal exports to 2021-22.

Those projections show a dramatic decline from the peak of $55 billion in 2016-17 to just $39.8 billion in 2021-22.
Australia's metallurgical coal exports

Australia's thermal coal exports


On 17 May 2017 Minerals Council of Australia issued another media release with the puzzling title "New Report: Low emission coal technology key to growth in South-East Asia".
What is puzzling about this title is that a report referenced in the media release, "Sylvie Cornot-Gandolfe, ‘The role of coal in Southeast Asia’s power sector’, Oxford Institute of Energy Studies, December 2016" notes that combined cycle gas turbine power plants are superior to coal power plants for Asia:
Natural gas-fired power plants are, however, cheaper and quicker to build than coal-fired power plants, have higher efficiencies and greater flexibility in plant operation, and above all emit less CO2 than coal power plants. (The cost of capital expenditure for combined cycle gas turbine (CCGT) plants is around half that of coal on a per kWe capacity basis and their CO 2 emissions are also half that of coal.)

The levelized cost of electricity generation (LCOE)14 is commonly used in national power development plans to compare the costs of different technologies. Based on IEA assumptions for the costs of capital, operation and maintenance, and finance, and using 2015 prices for coal and gas ($63.5/t for coal and $10.3/MMBtu for gas), the generating cost of a new supercritical (SC) coal plant is 35 per cent cheaper than the generating cost for a new CCGT plant (Figure 6). However, at August 2016 coal and gas prices, the generating costs for coal and gas are similar – even slightly cheaper for gas.

14The LCOE includes fixed costs, variable costs (operation and maintenance and fuel) and financing costs for new power plants. In order to make meaningful comparisons, it is necessary to make a range of assumptions about various costs and operating parameters of competing technologies, as well as assumptions on future coal and gas prices. coal and gas prices, the generating costs for coal and gas are similar – even slightly cheaper for gas.


Keeping the silliest announcement till last on 29 May 2017 Minerals Council of Australia issued another media release with the cryptic title "Government takes balanced view on low emission strategy".
The media release begins:
The Australian coal industry supports the government’s sensible policy which recognises the role of our high quality coal in helping to curb emissions.

If the policy intent is all about reducing emissions we should have a technology neutral approach and that means considering the opportunity coal offers when utilising both high efficiency low emission (HELE) and carbon capture and storage (CCS).

Including CCS in the Clean Energy Finance Corporation (CEFC) ambit strengthens our capacity to lower emissions in the supply of electricity.
It is what the media release doesn't say that is incredibly silly: if a power station operator can release CO2 into the atmosphere for free, then it is absurd to imagine any investment in capturing and storing that CO2.

The government which is led around by the Minerals Council of Australia has ruled out imposing any scheme to put a price on the release of CO2 into the atmosphere.


Saturday, May 20, 2017

Coal lobby pushing obsolete technology in Asia


The coal lobby tries to lock-in dependence on coal imports
The coal lobby tries to lock-in dependence on coal imports

























Sunday, May 7, 2017

Improving old coal-fired power stations

Existing coal-fired power stations using low-grade coal might continue to generate particulate and sulphur dioxide emissions until they are decommissioned. Some are fitted with scrubbers and other post-combustion filters to reduce these emissions. This approach reduces the efficiency of already inefficient coal-fired power stations:

The heating value of Indian coal is, on average, about 60 percent of the heating value of coal burned in the United States. This increases the amount of coal that must be burned to generate a given heat input, implying higher auxiliary electricity consumption to run coal grinding equipment, conveyors, and pumps.

Auxiliary generation... will also increase if electricity is used to run pollution abatement equipment, such as electrostatic precipitators ( ESPs ) and flue-gas desulfurization units ( scrubbers ) . We note although coal-fired power plants in both countries have ESPs, only three plants in India currently have scrubbers.1

In the meantime there are options to increase efficiency and reduce harmful emissions until it is feasible to decommission these coal-fired power stations.
Average Gross Thermal Efficiency of Coal-Fired Power Plants by Country

One of these options is to pre-process the low-grade coal before combustion. The technology available to do this has several advantages. It eliminates the particulate and sulphur dioxide emissions and, more importantly, increases the efficiency of these coal-fired power stations. Scrubbers and other post-combustion filters are no longer needed.

Low-grade coal contains relatively high levels of contaminants and moisture content. The moisture content reduces the energy available for power generation when its burned because energy is wasted converting the moisture into water vapour. The contaminants increase the energy that is used to run pollution abatement equipment.

To understand the available technology this simplified model gives a reasonable approximation of what takes place; Consider a process in which carbon and water are placed in a reaction vessel and an environment is created to promote a desired reaction that uses little or no external energy. The reaction breaks down some of the water into oxygen and hydrogen. The oxygen reacts with half of the carbon to form carbon dioxide and the hydrogen reacts with the remainder of the carbon to create methane. The energy released by the reactions with carbon provide the energy needed to break down water  into oxygen and hydrogen.
Hydromethanation - Carbon plus Water producing Methane plus Carbon Dioxide

The methane can be separated to use in place of low-grade coal in the existing coal-fired power stations. There are no particulates or sulphur dioxide to be removed from the exhaust gases. When methane burns, about half the energy is produced by the reaction of carbon with oxygen to produce carbon dioxide, and about half is produced by the reaction of hydrogen with oxygen to form water vapour. Note that the total amount of energy is the same as would have been produced if all of the carbon had been burned and not pre-processed into carbon dioxide and methane. The moisture content that was present in the low-grade coal has been separated, as water, before combustion. No energy is wasted converting that moisture into water vapour.
Supercritical Water Coal Gasification

Research on this technology was conducted in several countries interested in producing methane from biomass that contains significant amounts of water. That research has advanced into at least three commercially available products. These can be adapted to carry out the desired pre-processing of low-grade coal into methane:

Upgrading low-grade coal to methane
Upgrading low-grade coal to methane

1 Chan, Hei Sing (Ron), Maureen L. Cropper, and Kabir Malik. 2014. "Why Are Power Plants in India Less Efficient Than Power Plants in the United States?" American Economic Review, 104(5): 586-90. DOI: 10.1257/aer.104.5.586

Sunday, April 16, 2017

Practical Energy

The requirement statement for practical energy -
The answer is surprisingly simple.

There are 4 or 5 processes that do more-or-less the same thing in slightly different ways. Each was designed with a different purpose in mind, but that doesn't mean they can't be used for other purposes the designers hadn't considered.

Bioenergy, waste-to-energy, renewable energy storage as synthetic natural gas, biogas and synthetic natural gas from coal are different ways of doing the same thing.

Synthetic natural gas can be used to store energy, to generate electricity on demand, and as feedstock in manufacturing processes. Synthetic natural gas can also be manufactured for export in the form of LNG.

It can be made from 100 percent renewable energy, 100 percent fossil fuel energy, or some combination of both renewable and fossil energy. This allows a transition to a 100 percent renewable energy future, achieving the  above requirement statement: ensuring reliable, affordable and clean energy.

The underlying process combines carbon dioxide, water and energy to create methane and oxygen:
CO2 + 2H2O → CH4 + 2O2
  • Photosynthesis by plants and algae to create biomass that methanogenic bacteria convert to methane is one way of doing this with solar energy.
  • Waste-to-energy can use methanogenic bacteria to produce methane using the solar energy embedded in the waste.  
  • Electrolysis of water to produce hydrogen that is reacted with carbon dioxide to make methane is another way of doing this with solar PV systems and wind turbines.
  • Biomass can be converted to methane in high temperature superheated water reactors. The thermal energy to do this can be from concentrated solar thermal energy, or from reaction with either oxygen or hydrogen created by electrolysis of water.
  • Biomass can be converted to methane in very high temperature gasifiers that create carbon monoxide and hydrogen that is reacted in a separate step to create methane. The energy for this high temperature process can be obtained by burning a portion of the feedstock in air. 
In each of the above processes that use biomass to produce methane, coal can be used in place of some or all of biomass.

When there is sufficient solar PV and wind turbine generating capacity, hydrogen can be produced whenever electricity supply exceeds demand. This hydrogen can be reacted with carbon dioxide to make methane for generating electricity whenever demand exceeds the supply.

With sufficient renewable energy generating capacity, synthetic natural gas can be manufactured for export - providing completely renewable energy to importing countries via existing LNG export, transport and import infrastructure.

Curiously, coal is presently being converted to synthetic natural gas in the most environmentally 'unfriendly' option available - burning a portion of the coal in air to create carbon monoxide and hydrogen that is reacted in a separate step to create methane. This technology has been criticised for its high level of carbon dioxide emissions and water usage.

Coal could be converted to methane by reacting it with hydrogen produced by electrolysis of water with electricity from solar PV systems and wind turbines. It can also be converted to methane in high temperature superheated water reactors. The thermal energy to do this can be from concentrated solar thermal energy, or from reaction with hydrogen created by the electrolysis of water.

This is most suitable for low-grade lignite such as that found in Yallourn Valley in Australia that consists of 50 percent or more water. With this process it can be converted to high-value synthetic natural gas, avoiding the need for coal seam gas.

Its use can be gradually phased-out as renewable energy generating capacity increases to the stage where it can completely replace it.

Friday, January 27, 2017

Coal hard cash

India builds a low-efficiency, high emission (LEHE) coal-fired power station for Bangladesh


This is not so good for the Bangladesh economy and its environment. But it's not all bad news: the Government of India is lending Bangladesh the money for the project that will create jobs for India and boost India's economy.
Maitree Super Thermal Power Project gets cashed up
Business run by Indian Government bags Maitree Super Thermal Power Project contract

Ultra-supercritical tech won't be used in Rampal plant: official
October 31, 2016

Environmentalists have been pressing the government to relocate the Rampal power plant arguing that emissions of the power plant, and transportation and handling of coal through the Sunderbans would destroy the biodiversity of the world’s largest mangrove forest.

In the backdrop of severe criticism against the Rampal power project, the government has been claiming that it would use ‘ultra-supercritical’ technology which would put minimum impact on the Sunderbans, only 14km off the location of the power plant in Bagerhat.

Bangladesh-India Friendship Power Company Limited managing director Ujjal Kanti Bhattacharya told New Age on October 27, ‘The term ultra-supercritical has been made popular by the manufacturers of steam generators for commercial purposes.’

A top official of Bangladesh Coal Power Generation Company, which would implement Matarbari 1,200MW coal-fired power project, said that they would use supercritical technology and there was nothing called ‘ultra-supercritical’ technology in coal fired power generation.

Contract signing for Maitree Super Thermal Power Project
July 13, 2016

"I am extremely happy that Bharat Heavy Electrical Ltd has been awarded the engineering, procurement and construction (EPC) contract for the 2 X 600 MW Maitree Super Thermal Power project (also known as the Rampal power station) in Rampal (a small village in Bangladesh)."

Financing for the project has been arranged by EXIM Bank under the special financing package for strategic projects approved by the Government of India.

BHEL bags NTPC's Bangladesh project
July 14, 2016

Indian public sector company, Bharat Heavy Electricals Ltd (BHEL), has bagged the engineering, procurement and construction contract for a 1,320 megawatt power station for Bangladesh-India Friendship Power Company (BIFPC).

BIFPC is a 50:50 joint venture floated by Bangladesh Power development Board and Indian public sector company National Thermal Power Corporation (NTPC) of India. The company signed a contract agreement for the main plant engineering, procurement and construction contract on a turnkey package with BHEL India to construct the 2 X 600 MW Maitree Super Thermal Power Project...

...The contract value of the project is $1.49 billion which will be financed by Indian EXIM Bank. The plant is expected to start generation during 2019-20.

The Export-Import Bank of India - Indian Exim Bank

Export-Import Bank of India (EXIM Bank) is a specialized financial institution, wholly owned by Government of India, set up in 1982, for financing, facilitating and promoting foreign trade of India.

Bharat Heavy Electricals Ltd - BHEL

The Indian Government's Department of Heavy Industry is concerned with the development of the Heavy Engineering and Machine Tools Industry, Heavy Electrical Engineering Industry and Automotive Industry. It administers 32 Central Public Sector Enterprises (PSEs), including Bharat Heavy Electricals Limited (BHEL) of which the Government of India is the majority shareholder.

China builds a low-efficiency, high emission (LEHE) coal-fired power station for Pakistan


China strong-arms 'all-weather friend' Pakistan on coal power project
January 26, 2017

China has strong-armed 'all-weather friend' Pakistan to scale back up a coal-fired power project in Balochistan, Dawn reported.

In November, Pakistan had scaled down its Hub power project - that was to be run on imported coal -from 1,320MW plant to 660MW. This was as part of an overall decision to restrict power plants based on imported fuels. The project is being developed by a consortium of Hub Power Company and China Power International Holding Company at an estimated cost of $2.5 billion, Dawn said.

"The Chinese side is reported to have told Pakistan that commercial viability of the Hub power project on supercritical technology was possible only with 1,320MW for which it had also been given tariff by the National Electric Power Regulatory Authority on the request of the government of Pakistan," the newspaper said.

Wednesday, January 18, 2017

Efficient coal power plants are bad investments

The coal industry lobby is abuzz with talk of ultra-supercritical (USC) coal power plants and, more recently, "high efficiency, low emission" (HELE) coal power plants. The technology is very expensive. The carbon dioxide (CO2) emissions are very high.

The coal lobby turned its back on efficient coal-fired electricity generation in 2011 on realising the demand for coal would fall dramatically. (See "The coal industry's "War on Coal" campaign is all spin".)

The current buzz is a sad attempt to sell inefficient and very expensive coal technology in the hope of locking naive customers into buying coal and wasting money for decades to come.

Australia's Resources Minister, Matt Canavan is receiving very poor advice. According to an article by Michael McKenna in "The Australian" on 17 January 2017:

Matt Canavan backs technology to cut our carbon emissions

Resources Minister Matt Canavan
Resources Minister Matt Canavan. Picture: Jack Tran
"Australia could reach its carbon reduction target by replacing its ageing electricity generators with the latest and emerging low emission coal-fired power station technology [sic]."

The Minerals Council of Australia issued a media release on the same day as The Australian printed Michael McKenna's article about Resources Minister Matt Canavan. The Minerals Council's media release also made incorrect statements about coal-fired power technology.

This wasn't the first time the Minerals Council of Australia issued the same media release with the same incorrect statements about coal-fired power technology.

The following extract from the article "Setting the Benchmark: The World’s Most Efficient Coal-Fired Power Plants" has two key points:
  1. The 600-MW ultra-supercritical (USC) coal power plant in the United States cost $1.8 billion to build. That is $3,000 per kW of generating capacity. 
  2. The Japanese ultra-supercritical (USC) coal power plant is hailed as the cleanest coal-fired power plant in the world in terms of emissions intensity, but the amount of CO2 produced per kilowatt-hour of electricity produced is not given.

The CO2 emission intensity of the much-vaunted Japanese USC coal power plant is 802 kilograms per megawatt-hour which is 802 grams per kilowatt-hour. (See "Japan’s Isogo Power Plant Burnishes Clean Coal’s Credentials" for the information: "'As a result, we can achieve a gross thermal efficiency as high as 45 percent,' says Sasatsu. This, he adds, compares well with the 40 percent efficiency achieved by the old units, and it results in a reduction in carbon dioxide of 17 percent. That brings it down to 802 kg/MWh")

In contrast - if you really feel you must use fossil fuels to generate electricity - combined-cycle gas turbine power stations are about one-third the cost to build ($1,000 per kW of generating capacity) and have CO2 emissions of just 330 kilograms per megawatt-hour which is 330 grams per kilowatt-hour. (See "EIA publishes construction cost information for electric power generators" and "The coal lobby scores an own-goal".) Note the EIA hasn't any data on construction costs of coal power stations because no-one in its survey wasted their money building one.

I've got more than 99 pages of research but Matt Canavan's ain't one.

Matt Canavan and Michael McKenna have failed to respond to requests for links to the alleged "research" mentioned in the article printed in The Australian on 17 January 2017.



The Australian Government has wasted taxpayer dollars on the following research. Matt Canavan and Josh Frydenberg copy their "energy policy ideas" from media releases freely popped out by the Minerals Council of Australia.



Organisation
Title
Consultant
Date
Australian Energy Market Commission
Frontier Economics
8 December 2016
Australian Energy Market Commission

9 December 2016
Climate Change Authority

24 November 2016
CO2CRC

25 November 2015
Department of the Environment and Energy
ACIL Allen Consulting
24 April 2015
Department of the Environment and Energy
Energetics
5 May 2016
Department of the Environment and Energy
Dr Alan Finkel AO
13 December 2016
Department of the Environment and Energy

23 December 2016
 

Setting the Benchmark: The World’s Most Efficient Coal-Fired Power Plants

By Dawn Santoianni
Managing Director, Tau Technical Communications LLC
International efforts to mitigate climate impacts have intensely scrutinized carbon emissions from the electricity sector. Coal, in particular, has been targeted as a source of emissions that could be reduced. The International Energy Agency recognizes that “coal is an important source of energy for world…we must find ways to use coal more efficiently and to reduce its environmental footprint.”1
...
FIRST USC IN THE U.S.: JOHN W. TURK JR. POWER PLANT
The 600-MW John W. Turk Jr. power plant in Arkansas holds many distinctions. Completed in December 2012, it was the first USC plant built in the U.S. It also reigns as the country’s most efficient coal-fired power plant with an electrical efficiency of 40% HHV basis (~42% LHV basis).2 After the project was announced in 2006, American Electric Power’s (AEP) Southwestern Electric Power Co. (SWEPCO) spent several years trying to secure the necessary permits while fighting legal battles launched as part of national anti-coal campaigns. Under the legal settlement, SWEPCO agreed to retire an older 582-MW coal-fired unit in Texas, secure 400 MW of renewable power, and set aside US$10 million for land conservation and energy efficiency projects. At a final cost of US$1.8 billion to build the plant, the Turk plant also became the most expensive project ever built in Arkansas.
...
SETTING THE STANDARD FOR CLEAN COAL: ISOGO NEW UNITS 1 & 2, JAPAN
The Isogo Thermal Power Station is located only six kilometers from Yokohama, the second largest city in Japan. The power station originally consisted of two 1960s-vintage 265-MW subcritical units. During the late 1990s, Yokohama’s environmental improvement plans aimed to enhance the stability of electric power supply while retiring older facilities. Electric Power Development Co., Ltd. (J-POWER), which owns and operates Isogo, entered into a pollution prevention agreement with the city. The new USC Unit 1 (600 MW) was built while the original facility remained in operation, becoming operational itself in 2002. The two older units were then shut down and demolished. The new USC Unit 2 (also 600 MW) was constructed on the site of the old plant and started commercial operation in 2009. Isogo Unit 2 operates at 25 MPa (3626 psi) and 600°C/620°C reheat achieving 45% efficiency, while Unit 1 operates at a slightly lower 600°C/610°C. Completion of both units more than doubled the power generated at the small peninsula site while lowering emissions levels to that of a natural gas-fired combined-cycle plant [sic].
Combined, the two larger new units emit 50% less SOx, 80% less NOx, 70% less particulate, and 17% less CO2 than the older subcritical units that were replaced.3
...The system provides such exceptional pollution control that Isogo is ranked the cleanest coal-fired power plant in the world in terms of emissions intensity.
REFERENCES
  1. International Energy Agency (IEA). (2012). Technology roadmap:High-efficiency, low-emissions coal-fired power generation
  2. Williams, J. (2014). America’s best coal plants. Power Engineering, 118(7)
  3. Electric Power Development Co., Ltd. (2009). Replacement activities completed at Isogo Thermal. J-POWER Annual Report 2009